博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HDKV: High-Dimensional Similarity Query in Key-Value Stores
阅读量:5086 次
发布时间:2019-06-13

本文共 1347 字,大约阅读时间需要 4 分钟。

文章集中于key-value store

 

Locality-sensitive hashing (LSH) is a method of performing probabilistic  of high-dimensional data. The basic idea is to  the input items so that similar items are mapped to the same buckets with high probability (the number of buckets being much smaller than the universe of possible input items).

 

Stable distributions

The hash function  h_{\mathbf{a},b} (\boldsymbol{\upsilon}) :  \mathcal{R}^d \to \mathcal{N} maps a d dimensional vector \boldsymbol{\upsilon} onto a set of integers. Each hash function in the family is indexed by a choice of random \mathbf{a} and b where \mathbf{a} is a d dimensional vector with entries chosen independently from a  and b is a real number chosen uniformly from the range [0,r]. For a fixed \mathbf{a},b the hash function h_{\mathbf{a},b} is given by h_{\mathbf{a},b} (\boldsymbol{\upsilon}) = \left \lfloor \frac{\mathbf{a}\cdot \boldsymbol{\upsilon}+b}{r} \right \rfloor.

Other construction methods for hash functions have been proposed to better fit the data.  In particular k-means hash functions are better in practice than projection-based hash functions, but without any theoretical guarantee.

 

The key idea of locality-sensitive hash (LSH) is to hash the points using several hash functions so as to ensure that, for each function, the probability of

collision is much higher for objects which are close to each other than for those which are far apart. Then, one can determine near neighbors by hashing the
query point and retrieving elements stored in buckets containing that point.

转载于:https://www.cnblogs.com/zhangzhang/archive/2012/02/17/2355143.html

你可能感兴趣的文章
【ul开发攻略】HTML5/CSS3菜单代码 阴影+发光+圆角
查看>>
IOS-图片操作集合
查看>>
IO—》Properties类&序列化流与反序列化流
查看>>
测试计划
查看>>
Mysql与Oracle 的对比
查看>>
jquery实现限制textarea输入字数
查看>>
Codeforces 719B Anatoly and Cockroaches
查看>>
jenkins常用插件汇总
查看>>
c# 泛型+反射
查看>>
第九章 前后查找
查看>>
Python学习资料
查看>>
jQuery 自定义函数
查看>>
jquery datagrid 后台获取datatable处理成正确的json字符串
查看>>
ActiveMQ与spring整合
查看>>
web服务器
查看>>
第一阶段冲刺06
查看>>
EOS生产区块:解析插件producer_plugin
查看>>
JS取得绝对路径
查看>>
排球积分程序(三)——模型类的设计
查看>>
HDU 4635 Strongly connected
查看>>